Comparison between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Weibull Distribution with Known Shape under Linex Loss Function
نویسندگان
چکیده
Weibull distribution is widely employed in modeling and analyzing lifetime data. The present paper considers the estimation of the scale parameter of two parameter Weibull distribution with known shape. Maximum likelihood estimation is discussed. Bayes estimator is obtained using Jeffreys’ prior under linex loss function. Relative efficiency of the estimators are calculated in small and large samples for over-estimation and under-estimation using simulated data sets. It is observed that Bayes estimator fairs better especially in small sample size and when over estimation is more critical than under estimation.
منابع مشابه
Bayesian Estimation for the Pareto Income Distribution under Asymmetric LINEX Loss Function
The use of the Pareto distribution as a model for various socio-economic phenomena dates back to the late nineteenth century. In this paper, after some necessary preliminary results we deal with Bayes estimation of some of the parameters of interest under an asymmetric LINEX loss function, using suitable choice of priors when the scale parameter is known and unknown. Results of a Monte C...
متن کاملComparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches
This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملEstimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation
Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...
متن کامل